220 research outputs found

    Graphene-like Dirac states and Quantum Spin Hall Insulators in the square-octagonal MX2 (M=Mo, W; X=S, Se, Te) Isomers

    Full text link
    We studied the square-octagonal lattice of the transition metal dichalcogenide MX2_2 (with MM=Mo, W; XX=S, Se and Te), as an isomer of the normal hexagonal compound of MX2_2. By band structure calculations, we observe the graphene-like Dirac band structure in a rectangular lattice of MX2_2 with nonsymmorphic space group symmetry. Two bands with van Hove singularity points cross each at the Fermi energy, leading to two Dirac cones that locates at opposite momenta. Spin-orbit coupling can open a nontrivial gap at these Dirac points and induce the quantum spin Hall (QSH) phase, the 2D topological insulator. Here, square-octagonal MX2_2 structures realize the interesting graphene physics, such as Dirac bands and QSH effect, in the transition metal dichalcogenides.Comment: 4 pages, 3 figures, 1 Tabl

    Topological Materials: Weyl Semimetals

    Full text link
    Topological insulators and topological semimetals are both new classes of quantum materials, which are characterized by surface states induced by the topology of the bulk band structure. Topological Dirac or Weyl semimetals show linear dispersion round nodes, termed the Dirac or Weyl points, as the three-dimensional analogue of graphene. We review the basic concepts and compare these topological states of matter from the materials perspective with a special focus on Weyl semimetals. The TaAs family is the ideal materials class to introduce the signatures of Weyl points in a pedagogical way, from Fermi arcs to the chiral magneto-transport properties, followed by the hunting for the type-II Weyl semimetals in WTe2, MoTe2 and related compounds. Many materials are members of big families and topological properties can be tuned. As one example, we introduce the multifuntional topological materials, Heusler compounds, in which both topological insulators and magnetic Weyl semimetals can be found. Instead of a comprehensive review, this article is expected to serve as a helpful introduction and summary by taking a snapshot of the quickly expanding field.Comment: 19 pages, 7 figures, an invited review article for Annual Review of Condensed Matter Physic

    The Berry curvature dipole in Weyl semimetal materials: an ab initio study

    Full text link
    Noncentrosymmetric metals are anticipated to exhibit a dcdc photocurrent in the nonlinear optical response caused by the Berry curvature dipole in momentum space. Weyl semimetals (WSMs) are expected to be excellent candidates for observing these nonlinear effects because they carry a large Berry curvature concentrated in small regions, i.e., near the Weyl points. We have implemented the semiclassical Berry curvature dipole formalism into an ab initioab~initio scheme and investigated the second-order nonlinear response for two representative groups of materials: the TaAs-family type-I WSMs and MoTe2_2-family type-II WSMs. Both types of WSMs exhibited a Berry curvature dipole, in which type-II Weyl points are usually superior to the type-I because of the strong tilt. Corresponding nonlinear susceptibilities in several materials promise a nonlinear Hall effect in the dcdc field limit, which is within the experimentally detectable range.Comment: 6 pages, 4 figures and 1 tabl

    Topological surface states and Fermi arcs of the noncentrosymmetric Weyl semimetals TaAs, TaP, NbAs, and NbP

    Full text link
    Very recently the topological Weyl semimetal (WSM) state was predicted in the noncentrosymmetric compounds TaAs, TaP, NbAs, and NbP and soon led to photoemission and transport experiments to verify the presumed topological properties such as Fermi arcs (unclosed Fermi surfaces) and the chiral anomaly. In this work, we have performed fully \textit{ab initio} calculations of the surface band structures of these four WSM materials and revealed the Fermi arcs with spin-momentum-locked spin texture. On the (001) polar surface, the shape of the Fermi surface depends sensitively on the surface terminations (cations or anions), although they exhibit the same topology with arcs. The anion (P or As) terminated surfaces are found to fit recent photoemission measurements well. Such surface potential dependence indicates that the shape of the Fermi surface can be manipulated by depositing guest species (such as K atoms), as we demonstrate. On the polar surface of a WSM without inversion symmetry, Rashba-type spin polarization naturally exists in the surface states and leads to strong spin texture. By tracing the spin polarization of the Fermi surface, we can also distinguish Fermi arcs from trivial Fermi circles. The four compounds NbP, NbAs, TaP, and TaAs present an increasing amplitude of spin-orbit coupling (SOC) in the band structure. By comparing their surface states, we reveal the evolution of topological Fermi arcs from the spin-degenerate Fermi circle to spin-split arcs when the SOC increases from zero to a finite value. Our work will help us understand the complicated surface states of WSMs and allow us to manipulate them, especially for future spin-revolved photoemission and transport experiments.Comment: This manuscript has been submitted to Physical Review B on 22 Jul. 201

    Gas Doping on the Topological Insulator Bi2Se3 Surface

    Full text link
    Gas molecule doping on the topological insulator Bi2 Se3 surface with existing Se vacancies is investigated using first-principles calculations. Consistent with experiments, NO2 and O2 are found to occupy the Se vacancy sites, remove vacancy-doped electrons and restore the band structure of a perfect surface. In contrast, NO and H2 do not favour passivation of such vacancies. Interestingly we have revealed a NO2 dissociation process that can well explain the speculative introduced "photon-doping" effect reported by recent experiments. Experimental strategies to validate this mechanism are presented. The choice and the effect of different passivators are discussed. This step paves the way for the usage of such materials in device applications utilizing robust topological surface states

    A large energy-gap oxide topological insulator based on the superconductor BaBiO3

    Full text link
    Mixed-valent perovskite oxides based on BaBiO3 (BBO) are, like cuperates, well-known high-Tc superconductors. Recent ab inito calculations have assigned the high-Tc superconductivity to a correlation-enhanced electron--phonon coupling mechanism, stimulating the prediction and synthesis of new superconductor candidates among mixed-valent thallium perovskites. Existing superconductivity has meant that research has mainly focused on hole-doped compounds, leaving electron-doped compounds relatively unexplored. Here we demonstrate through ab inito calculations that BBO emerges as a topological insulator (TI) in the electron-doped region, where the spin-orbit coupling (SOC) effect is significant. BBO exhibits the largest topological energy gap of 0.7 eV among currently known TI materials, inside which Dirac-type topological surface states (TSSs) exit. As the first oxide TI, BBO is naturally stable against surface oxidization and degrading, different from chalcoginide TIs. An extra advantage of BBO lies in its ability to serve an interface between the TSSs and the superconductor for the realization of Majorana Fermions

    Hidden type-II Weyl points in the Weyl semimetal NbP

    Full text link
    As one of Weyl semimetals discovered recently, NbP exhibits two groups of Weyl points with one group lying inside the kz=0k_z=0 plane and the other group staying away from this plane. All Weyl points have been assumed to be type-I, for which the Fermi surface shrinks into a point as the Fermi energy crosses the Weyl point. In this work, we have revealed that the second group of Weyl points are actually type-II, which are found to be touching points between the electron and hole pockets in the Fermi surface. Corresponding Weyl cones are strongly tilted along a line approximately 17∘17^\circ off the kzk_z axis in the kx−kzk_x - k_z (or ky−kzk_y - k_z) plane, violating the Lorentz symmetry but still giving rise to Fermi arcs on the surface. Therefore, NbP exhibits both type-I (kz=0k_z=0 plane) and type-II (kz≠0k_z \neq 0 plane) Weyl points.Comment: 5 pages and 4 figure

    Prediction of Near-Room-Temperature Quantum Anomalous Hall Effect on Honeycomb Materials

    Full text link
    Recently, this long-sought quantum anomalous Hall effect was realized in the magnetic topological insulator. However, the requirement of an extremely low temperature (approximately 30 mK) hinders realistic applications. Based on \textit{ab-initio} band structure calculations, we propose a quantum anomalous Hall platform with a large energy gap of 0.34 and 0.06 eV on honeycomb lattices comprised of Sn and Ge, respectively. The ferromagnetic order forms in one sublattice of the honeycomb structure by controlling the surface functionalization rather than dilute magnetic doping, which is expected to be visualized by spin polarized STM in experiment. Strong coupling between the inherent QSH state and ferromagnetism results in considerable exchange splitting and consequently an FM insulator with a large energy gap. The estimated mean-field Curie temperature is 243 and 509 K for Sn and Ge lattices, respectively. The large energy gap and high Curie temperature indicate the feasibility of the QAH effect in the near-room-temperature and even room-temperature regions.Comment: 6 pages, 4 figures and 1 tabl
    • …
    corecore